Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 41(8): 1801-1816, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32880098

RESUMO

Microglia/macrophages have been identified to be highly polarized after ischemia. Interestingly, the polarization of these microglia/macrophages varies immensely under differing disease conditions. Post-conditioning using sevoflurane, a volatile anesthetic, could provide long-term neuroprotection to neonatal rats after hypoxic-ischemic brain injury (HIBI). Thus, the current study aimed at investigating the effects of sevoflurane post-conditioning (SPC) on microglia/macrophage polarization after HIBI induction in neonatal rats. Additionally, we aimed at identifying the underpinning mechanisms specifically related to autophagy and lysosomal protease enzyme, cathepsin B. To develop a HIBI model, 7-day-old Sprague-Dawley rats underwent left common carotid artery ligation followed by 2 h of hypoxia. The role of microglia/macrophages in the neuroprotection conferred by SPC was examined by left-side intra-cerebroventricular injection with adenovirus vector carrying catB-GFP or rapamycin. The number of interleukin (IL)-1ß+ cells, cathepsin B+ cells, light chain 3B positive (LC3B+) cells among ionized calcium binding adaptor molecule 1(Iba1+)cells to investigate microglia polarization, neuronal apoptosis to assess neuronal death in the acute phase were tested at 24 h after HIBI. Behavioral tests including suspension test, Morris water maze tests were performed to investigate the long-term effects of SPC, at 21 to 34 days post HIBI. Nissl staining and myelin basic protein (MBP) immunostaining to assess the long-term neuronal and myelin damage were performed at 34 days after HIBI. Based on the obtained results post HIBI, we observed the cells that were positive for IL-1ß, cathepsin B, and LC3B among Iba1 positive cell population in the hippocampus were significantly decreased after SPC treatment. SPC significantly attenuated the HIBI-induced increase in neuronal apoptosis, improved long-term cognitive function, and attenuated HI-induced decrease of Nissl-positive cells and MBP expression. However, these trends were reversed by injection of adenovirus vector carrying catB-GFP and rapamycin. SPC attenuated microglia polarization towards neurotoxic phenotypes, alleviates neuronal death and axon demyelination after HIBI in neonatal rats by regulating microglia autophagy and cathepsin B expression, and therefore provided long-term cognitive, learning and memory protection.


Assuntos
Doenças Desmielinizantes/terapia , Hipóxia-Isquemia Encefálica/terapia , Pós-Condicionamento Isquêmico/métodos , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Sevoflurano/administração & dosagem , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Feminino , Hipóxia-Isquemia Encefálica/metabolismo , Macrófagos/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores da Agregação Plaquetária/administração & dosagem , Ratos , Ratos Sprague-Dawley
2.
Neural Regen Res ; 16(6): 1052-1061, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269750

RESUMO

Previous studies have demonstrated that sevoflurane postconditioning can provide neuroprotection after hypoxic-ischemic injury and improve learning and memory function in developing rodent brains. The classical Rice-Vannucci model was used to induce hypoxic-ischemic injury, and newborn (postnatal day 7) rats were treated with 2.4% sevoflurane for 30 minutes after hypoxic-ischemic injury. Our results showed that sevoflurane postconditioning significantly improved the learning and memory function of rats, decreased astrogliosis and glial scar formation, increased numbers of dendritic spines, and protected the histomorphology of the hippocampus. Mechanistically, sevoflurane postconditioning decreased expression of von Hippel-Lindau of hypoxia-inducible factor-1α and increased expression of DJ-1. Injection of 1.52 µg of the hypoxia-inducible factor-1α inhibitor YC-1 (Lificiguat) into the left lateral ventricle 30 minutes before hypoxic-ischemic injury reversed the neuroprotection induced by sevoflurane. This finding suggests that sevoflurane can effectively alleviate astrogliosis in the hippocampus and reduce learning and memory impairments caused by glial scar formation after hypoxic-ischemic injury. The underlying mechanism may be related to upregulated DJ-1 expression, reduced ubiquitination of hypoxia-inducible factor-1α, and stabilized hypoxia-inducible factor-1α expression. This study was approved by the Laboratory Animal Care Committee of China Medical University, China (approval No. 2016PS337K) on November 9, 2016.

3.
Drug Des Devel Ther ; 13: 1691-1706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190748

RESUMO

Background: When neonatal rats suffer hypoxic-ischemic brain injury (HIBI), autophagy is over-activated in the hippocampus, and inhibition of autophagy provides neuroprotection. The aim of this study was to investigate the possible roles of autophagy and Ezh2-regulated Pten/Akt/mTOR pathway in sevoflurane post-conditioning (SPC)-mediated neuroprotection against HIBI in neonatal rats. Methods: Seven-day-old Sprague-Dawley rats underwent left common artery ligation followed by 2 h hypoxia as described in the Rice-Vannucci model. The roles of autophagy and the Ezh2-regulated Pten/Akt/mTOR signaling pathway in the neuroprotection conferred by SPC were examined by left-side intracerebroventricular injection with the autophagy activator rapamycin and the Ezh2 inhibitor GSK126. Results: SPC was neuroprotective against HIBI through the inhibition of over-activated autophagy in the hippocampus as characterized by the rapamycin-induced reversal of neuronal density, neuronal morphology, cerebral morphology, and the expression of the autophagy markers, LC3B-II and Beclin1. SPC significantly increased the expression of Ezh2, H3K27me3, pAkt, and mTOR and decreased the expression of Pten induced by HI. The Ezh2 inhibitor, GSK126, significantly reversed the SPC-induced changes in expression of H3K27me3, Pten, pAkt, mTOR, LC3B-II, and Beclin1. Ezh2 inhibition also reversed SPC-mediated attenuation of neuronal loss and behavioral improvement in the Morris water maze. Conclusion: These results indicate that SPC inhibits excessive autophagy via the regulation of Pten/Akt/mTOR signaling by Ezh2 to confer neuroprotection against HIBI in neonatal rats.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Sevoflurano/farmacologia , Animais , Animais Recém-Nascidos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Feminino , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Indóis/farmacologia , Masculino , Piridonas/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...